Search results

Search for "vascular smooth muscle cells" in Full Text gives 5 result(s) in Beilstein Journal of Nanotechnology.

Preparation of micro/nanopatterned gelatins crosslinked with genipin for biocompatible dental implants

  • Reika Makita,
  • Tsukasa Akasaka,
  • Seiichi Tamagawa,
  • Yasuhiro Yoshida,
  • Saori Miyata,
  • Hirofumi Miyaji and
  • Tsutomu Sugaya

Beilstein J. Nanotechnol. 2018, 9, 1735–1754, doi:10.3762/bjnano.9.165

Graphical Abstract
  • either gelatin or collagen substrates. However, grooves with a width of 100 µm width did not influence osteoblast cell orientation [44]. Good cell alignment in collagen or gelatin grooves has also been reported for NIH-3T3 cells [36], vascular smooth muscle cells [46], and dental pulp stem cells [56]. In
  • [45][46]. In one study, the cell proliferation of corneal endothelial cells on GelMA pillars with a diameter of 250 nm or 1 µm was found to be increased compared to the planar GelMA surface [45]. Zorlutuna et al. have also shown that cell proliferation of vascular smooth muscle cells in collagen
PDF
Album
Full Research Paper
Published 11 Jun 2018

Nano- and microstructured materials for in vitro studies of the physiology of vascular cells

  • Alexandra M. Greiner,
  • Adria Sales,
  • Hao Chen,
  • Sarah A. Biela,
  • Dieter Kaufmann and
  • Ralf Kemkemer

Beilstein J. Nanotechnol. 2016, 7, 1620–1641, doi:10.3762/bjnano.7.155

Graphical Abstract
  • of vascular cell responses under well-defined, controllable culture conditions. These advancements are paving the way for a deeper understanding of vascular cell biology and materials–cell interaction. Here, we review previous work focusing on the interaction of vascular smooth muscle cells (SMCs
  • potential interesting future studies. Keywords: fabrication methods; materials selection; nano- and micro-topography; vascular endothelial cells; vascular smooth muscle cells; Introduction Cells adhering to biomaterials are influenced by the surface topography, the surface chemistry and the mechanical
  • and regulated by an inner layer of vascular endothelial cells (ECs), and an outer layer of vascular smooth muscle cells (SMCs) (Figure 2) [167][168]. ECs are lining the inner part of the blood vessel (tunica intima), forming the so-called endothelium, and therefore they are in contact with the blood
PDF
Album
Review
Published 08 Nov 2016

Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques

  • Anja Ostrowski,
  • Daniel Nordmeyer,
  • Alexander Boreham,
  • Cornelia Holzhausen,
  • Lars Mundhenk,
  • Christina Graf,
  • Martina C. Meinke,
  • Annika Vogt,
  • Sabrina Hadam,
  • Jürgen Lademann,
  • Eckart Rühl,
  • Ulrike Alexiev and
  • Achim D. Gruber

Beilstein J. Nanotechnol. 2015, 6, 263–280, doi:10.3762/bjnano.6.25

Graphical Abstract
  • local distribution of zinc in the cells and micro-X-ray absorption near-edge structure (XANES) spectroscopy allowed for the identification of different zinc species present in the sample [144]. Others used STXM and compact source transmission X-ray microscopy for subcellular imaging of vascular smooth
  • muscle cells and characterized the local calcium distribution by using spectromicroscopy at the calcium L3,2 edges [150]. Despite the advantages of soft X-ray microscopy compared with fluorescence or electron microscopy techniques, it has only been applied for few biomedical samples so far due to the
PDF
Album
Review
Published 23 Jan 2015

PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments

  • Sebastian Ahlberg,
  • Alexandra Antonopulos,
  • Jörg Diendorf,
  • Ralf Dringen,
  • Matthias Epple,
  • Rebekka Flöck,
  • Wolfgang Goedecke,
  • Christina Graf,
  • Nadine Haberl,
  • Jens Helmlinger,
  • Fabian Herzog,
  • Frederike Heuer,
  • Stephanie Hirn,
  • Christian Johannes,
  • Stefanie Kittler,
  • Manfred Köller,
  • Katrin Korn,
  • Wolfgang G. Kreyling,
  • Fritz Krombach,
  • Jürgen Lademann,
  • Kateryna Loza,
  • Eva M. Luther,
  • Marcelina Malissek,
  • Martina C. Meinke,
  • Daniel Nordmeyer,
  • Anne Pailliart,
  • Jörg Raabe,
  • Fiorenza Rancan,
  • Barbara Rothen-Rutishauser,
  • Eckart Rühl,
  • Carsten Schleh,
  • Andreas Seibel,
  • Christina Sengstock,
  • Lennart Treuel,
  • Annika Vogt,
  • Katrin Weber and
  • Reinhard Zellner

Beilstein J. Nanotechnol. 2014, 5, 1944–1965, doi:10.3762/bjnano.5.205

Graphical Abstract
  • -nanoparticles in vascular smooth muscle cells was induced by the addition of BSA [94]. The understanding of the dissemination of silver nanoparticles must be related either to exoxytosis and/or to dissolution. It is complicated by the coexistence of silver in nanoparticulate and in ionic form, which will likely
PDF
Album
Review
Published 03 Nov 2014

Near-infrared dye loaded polymeric nanoparticles for cancer imaging and therapy and cellular response after laser-induced heating

  • Tingjun Lei,
  • Alicia Fernandez-Fernandez,
  • Romila Manchanda,
  • Yen-Chih Huang and
  • Anthony J. McGoron

Beilstein J. Nanotechnol. 2014, 5, 313–322, doi:10.3762/bjnano.5.35

Graphical Abstract
  • (STATs) to the HSP70 promoters in vascular smooth muscle cells (VSMCs) [32]. This group exposed VSMCs to H2O2 and found that the cytoplasmic janus tyrosine kinase 2 (JAK2)/STAT pathway can up-regulate HSP70 and minimize oxidative stress effects on the cells. The inhibition of HSP70 expression under laser
PDF
Album
Supp Info
Full Research Paper
Published 18 Mar 2014
Other Beilstein-Institut Open Science Activities